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ABSTRACT 

Since much of geology and hydrogeology is controlled by the geometry of geologic features 
such as faults, fractures, and stratigraphy, many researchers have proposed the use of 
fractal dimension as an index for comparing hydrogeologic environments. This report 
describes an investigation carried out by Golder Associates Geosystem AB to evaluate the 
use of fractal measures within the SKB site selection, evaluation, and characterization 
process. 

This report defines fractal dimension and the methods available for calculating fractal 
dimension. The report then summarizes a literature survey carried out to identify and 
evaluate applications of fractal methods in hydrogeology. Preliminary hydrogeological 
fractal numerical simulations carried out with the FracMan package (Dershowitz et al., 
1991) are then presented and discussed. These numerical simulations evaluate the 
application of fractal methods within the context of other geometric measures such as 
connectivity measures, percolation probability, and block size measures. 

Based upon the literature survey and numerical simulations, recommendations are 
presented regarding the potential usefulness of fractal approaches. Fractal dimension can 
be used to distinguish hydrogeologic environments, provided the limitations of the 
approach are explicitly recognized. Recommendations are made for fractal dimension 
calculation procedures, specification of fractal dimension, and the use of fractal dimension 
in conjunction with other measures of hydrogeologic structure and heterogeneity. 
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1. INTRODUCTION 

A fractal, or a fractal set, is "a shape made of parts similar to the whole in some way" 
(Feder, 1988). A fractal set may be described by its "dimension" (Mandelbrot, 1975), which 
is an indication of the degree of heterogeneity or roughness of the shape. Fractal systems 
have similar geometries at different scales, such that measurements made at one scale can 
be used to predict geometries at other scales. 

Since much of geology and hydrogeology is controlled by the geometry of geologic features 
such as faults, fractures, and stratigraphy, many researchers have proposed the use of 
fractal dimension as an index for replicating geologically realistic fracture patterns. 

Golder Associates has carried out a literature survey and preliminary numerical simulations 
to evaluate the usefulness of fractal dimension as an index for comparing geological 
environments for radioactive waste disposal. Numerical simulations were carried out with 
the FracMan package (Dershowitz et al., 1991c). 

The use of fractal dimension for characterizing diverse physical phenomena has increased 
exponentially over the past ten years (Figure 1). This may indicate the usefulness of fractal 
dimension as an index, or the tendency to calculate fractal measures even when they have 
little practical significance. 

1.1 Background 

Fractal geometry is an extension of classical Cartesian or Euclidian1 geometry. Fractal 
geometries are distinguished by three key characteristics: self-similarity, non-differentiability 
and partial filling of Euclidian space (Figure 2). 

Fractal dimension is a way to describe the pattern, shape or spatial distribution of 
geometric features. Just as a line has a Euclidian dimension E of 1, and a plane has a 
Euclidian dimension E of 2, a cluster of lines in a plane can have a dimension between 1 
and 2. The fractal description of shape or pattern has been applied to fracture and fault 
patterns, fracture roughness, rock block and crystal geometry, and topography. 

More than 20 different approaches have been defined for estimating the fractal dimension. 
Each of these approaches describes a different aspect of the pattern. Fractal measures are 
generally based upon a log-log relationship between a size measure and a count measure, 
with the fractal dimension defined by the slope (Figure 3). 

1For convenience in the ensuing disussion, we denote as E the Euclidian or Cartesian 
dimension, and fractal dimension as D. 



100 

--
-+ 

80 

* --8--

60 * + 
~ 

40 
-£---

20 

0 
1964 

Feigenbaum, 78 

Ruelle-Takens, 71 

Haken, 75 

Henon-Heiles, 64 

Henon, 76 

Li-Yorke, 75 

Lorenz, 63 

May, 76 

1969 

Data were taken from Science Citation 
Index, Five Year Summary Volumes, 
and averaged for the years following 
the publication date. The data for 1989 
are the number of citations recorded in 
the 1989 volume. 

(After Middleton, 1991) 

1974 1979 1984 1989 

FIGURE 1 
CITATIONS OF CLASSIC PAPERS ON 

CHAOS AND FRACTALS 



(a) Self Similarity - each part of the shape resembles the whole. 

_/\_ 
(b) Non-Differentiable - first derivatives diverge to infinity. 

(c) Partially Fill Euclidean Space. 

► 4v-, ---► Length to .d't:J ~ infinity 

FIGURE 2 
PROPERTIES OF FRACTAL 

GEOMETRIES 



z 
E 
::, 
0 
(.) 

'7 Fractal Dimension D 

Size L 

FIGURE 3 
LOG-LOG PLOT FOR 

FRACTAL DIMENSION 



5 

Fractal geometry of point patterns, for example, can be described by the box counting 
method, which relates the number of boxes containing points to the size of the boxes 
(Figure 4a). The fractal geometry of a rough surface may be defined by the ruler method, 
which relates the number of rulers necessary to traverse a surface to the length of the 
rulers (Figure 4b), although care must be taken if the surface is self-affine rather than self­
similar. Each of these methods describes a different aspect of the pattern. As a result, 
fractal dimension should not be quoted without reference to the method used for 
calculating the dimension. 

While fractal dimension can be a useful way to describe patterns and shapes, the ability to 
define a fractal dimension does not ensure a fractal pattern. To be fractal, a pattern must 
be either "self-similar" or "self-affine" (Figure 5). Self-similar patterns are defined as patterns 
which are the same at different scales, while self-affine patterns are similar at different 
scales only when scaled by different ratios in different coordinates. The existence of self­
similar or self-affine fractal patterns can only be proven by comparison of the patterns at 
different scales. Barton et al. (1991) point out that approaches used for calculation of the 
fractal dimension of self-similar fractals may not be appropriate for self-affine fractals. 

1.2 Definitions 

Fractal dimension is an extension of the standard notion of Cartesian (or Euclidian) 
dimension. Mandelbrot (1983, original publication 1977) defined a fractal to be a set with 
Hausdorff dimension2 strictly larger than its topological dimension. Unlike Euclidian 
dimensions, fractal dimensions can take on both non-integer and integer values. The 
fractal dimension describes how a lower dimension feature (such as a set of fractures) fills a 
higher dimensional space (such as a rock mass). The dimension should be between that of 
the feature and the space in which the feature is defined. 

Thus, fractal theory does not use the term "dimension" in a strictly topological sense, but 
rather as an index or "metric" to describe a pattern. Such an idea involves a geometric 
space that allows for some reasonable measure of distance. This means that when we use 
"fractal dimension" to describe geological features, we address a form of measurement of 
the phenomena and not the topology of the phenomena. 

To further understand the interpretation of fractal dimension, consider the manner in 
which a fractal set is constructed following Mandelbrot (1983). For all D-dimensional 
parallepipeds defined by D s: E, the fractal dimension D is functionally expressed as D = 
log N / log (1/L). Then, as shown in Figure 6, 

2The Hausdorff dimension is defined as the value of d for which the measure Md = N(L)*L d 

is finite and non-zero, where N(L) oo L-0 . For Euclidian objects, D is an integer, so the measure 
is only finite and non-zero when d equals its topological dimension, whereas for fractals, the 
mmeasure is finite and non-zero only when d is a non-integer. 
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the generator of the set is an oriented broken line composed on N equal sides 
of length L. Each stage of the construction begins with a broken line and 
consists in replacing each straight interval with a copy of the generator, 
reduced and displaced so as to have the same end points as those of the 
interval being replaced. 

The fractal dimension may be restated NL D = 1, which indicates that the fractal dimension 
represents a geometric weight between the oriented broken line of N sides and the side 
lengths, L. 

A fractal that is invariant under ordinary geometric similarity is called "self-similar." Self­
similar fractal sets are built from pieces similar to the entire set but on a finer and finer 
scale. For example, we would expect fracture tracelengths that are self-similar fractal sets at 
the kilometer scale to exhibit the same behavior at the millimeter scale. From a Euclidian 
perspective, a standard self-similar shape is a line segment divided into N equal parts of 
length L, a square is composed of N parts of area L2, and a cube is composed of N parts of 
volume L3, and so on, regardless of whether the unit of measurement was kilometers or 
millimeters. 

Another example of a self-similar fractal is Brownian motion in the plane of a microscope 
slide. As shown in Figure 7 (after Mandelbrot, 1983, plate 13), we see that the path of a 
particle appears the same regardless of magnification. As a bounded random set, 
Brownian motion is statistically self-similar, namely, the distribution of any point in 
Brownian motion is identical to the distribution of the totality of the points. An alternative 
way of stating this is that all moments of the distribution of individual particles are 
identical to the moments of the distribution of all the particles. 

A fractal that is self-affine is somewhat different than a self-similar fractal. As shown in 
Figure 5 (after Barton et. al, 1991), self-affine processes may scale anisotropically, provided 
the change in proportion is the same from any initial scale. Faults, fractures, and fracture 
roughness are all thought to be self-affine (Barton et al., 1991). 

1.3 Calculation of Fractal Dimension 

There are several techniques used to estimate fractal dimension in geologic applications. 
Each describe a different type of feature. Many are restricted to use only on self-similar 
fractals. Measures for calculating fractal dimension are summarized in Figure 8. They can 
be summarized by the x and y axes used in their log-log plots (Table 1). 
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Table 1: Methods for Fractal Dimension Calculation 

Method Length L Count N Self Similar (S) or 
Self Affine (A) 

Box Box Side Number of Boxes s 
to Cover Figure 

Mass/Density Circle Radius Number of Points S,A 
in Circle 

Information Box Side Weighted Number s 
of Boxes to Cover 
Figure 

Correlation Distance Number of s 
Between Features within 
Features Distance 

Fragmentation Block Width Number of Blocks s 
Spectral Density Wave Number Power Spectral A 

Density 

Rescaled Range Interval Length Normalized A 
Maximum 
Difference in 
Values 

RMS Roughness Interval Length Normalized RMS A 
Error from Trend 

Variogram Distance Normalized A 
Between Points Difference in 

Values 

The box method is basically a two-dimensional yardstick. There are two variations of this 
approach. In one variation, Brown (1987a), the fractal is first scaled (usually by several 
orders of magnitude) in order to minimize crossovers, and then, a grid of square boxes is 
overlaid on the fractal such that a constant aspect ratio on the fractal is maintained. The 
log-log relationship between the number of divisions of the grid and the number of boxes 
required to cover the fractal is determined. A second variation, Feder (1988) uses a similar 
box size method, but instead determines the relationship between the box-size multiplier 
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and the number of boxes required to cover the fractal. The former method is 
computationally simple, and is expressed as log N = A + D log b, where N is the number 
of boxes required to cover the fractal, b is the number of box-grid divisions in the x and y 
directions, and A is y-intercept. The slope of this function is D, the fractal dimension. The 
box dimension is described by a plot of the equation, 

where N(L) is the minimum number of boxes of size L necessary to include every feature. 
Find N(L) by counting the number of boxes which contain features using a regular grid of 
boxes. 

The divider method is equivalent to placing a yardstick of composed of fixed common 
intervals over the fractal. The number of intervals required to cover the entire fractal is 
counted, and then multiplied by the size of each interval to give an estimate of the fractal 
length, L. The measurement interval is changed and the process is repeated. This is 
performed several times. The fractal length, L, is linear in a log-log relationship to the 
interval size, r, in the following manner: log L = A + (1 - D) log r, where D is the fractal 
dimension. In this notation, A is the y-intercept. The slope of the log-log plot of L and r is 
some value B, and B = 1 - D. Thus, D = 1 - B. The divider method has been used for 
measuring fracture roughness (which is self-affine). The method is only appropriate for 
self-similar fractals, however. 

The modified divider method consists of using equally-spaced horizontal divider intervals 
(i.e., x-axis increments) and connecting the points at which x-axis values intersect the 
fractal. The lengths of each connecting segment, Li, are determined, and the total number 
of segments are added together to compute the total length, L. The x-axis measurement 
interval is changed, and the process is repeated. The manner of computing D is the same 
as the divider method. 

The spectral density method assumes that the fractal has a spectral density that follows a 
power law relationship, i.e., the spectral density of the frequency, f, is proportional to f1>, 
such that the fractal dimension, D, is related to b as b = 2D - 5. As with any spectral 
estimation procedure, assumptions regarding the stationarity and the ergodicity of the 
process greatly influence the validity of the spectral estimates. The spectral density method 
is only appropriate for self-affine fractals. 

The Mass/Cluster/Point method is a variant of the box dimension, designed to be useful for 
both self-similar and self-affine fractals. In this method, a series of circles are defined, 
starting at the center of a cluster of fractures, and the number of points inside each circle is 
plotted against the circle radius, 

µ(r) = r° 

where µ(r) is the number of features inside a circle of radius r, starting from the center of a 
cluster. This approach is referred to as the ''Levy-Lee" method in the FracMan model, since 
it provides the dimension necessary for the Levy-Lee fracture conceptual model. However, 
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it depends upon the definition of circles starting from the center of clusters - calculations 
based upon circles not located around cluster centers are not meaningful. 

The Information Dimension combines the information on the number of features in the 
mass dimension with the box dimension concept of coverage of a figure. 

N(L) 

I(L) = - L µi log µ 
i=l 

I(L) = -D1 log(L) 

Additional measures for fractal dimension include, 

• Correlation Dimension: Based upon the distribution of distances between features 

• Ruler Dimension: Based upon the number of straight rules needed to cover a 
curve for different ruler lengths 

• Perimeter-Area Dimension: A ruler dimension for comparing perimeters and areas 
of two dimensional features 

• Fragmentation Dimension: Based on the distribution of block sizes as measured 
by the longest ruler which would fit into each block 
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2. TASK 1: LITERATURE REVIEW 

The primary questions to be addressed by the literature survey were as follows: 

• Can the fractal dimension be used to compare geologic environments? 

• What is the geological explanation for variation in the fractal dimension between 
geologic environments? 

A total of over 430 citations of fractal dimension and geology and hydrology were 
identified by a computer literature search of Georef, NTIS, USOOE, and Compendex data 
bases. Of there, 78 were selected for close evaluation. An additional 53 references were 
identified and reviewed based upon references found in the literature. 

This literature search did not identify applications in which fractal dimension was used as 
a primary index for comparing geologic environments, or where processes of non-linear 
dynamics and the fractal dimension were directly related to the genesis of geologic settings. 
However, experts in the U.S. oil industry contacted as part of this project indicated that 
fractal dimension is used to distinguish well locations. In addition, a number of citations 
were found which indicated that settings with higher fractional dimension could be 
expected to have higher fracture connection and greater heterogeneity. This has two 
contradictory implications for repository site selection: 

• Higher fracture interconnection indicates the potential for greater radionuclide 
transport, and thus a less attractive site. 

• Greater fracture system heterogeneity indicates the potential for larger blocks of 
rock without significant fracturing, and thus a more attractive site. 

The literature review concentrated on the following topical areas: 

• Data indicating fractal scaling in the geometry and heterogeneity of discrete 
features (e.g., fractures, faults, lineaments, karsts) and physical properties (e.g., 
conductivity, deformability/elasticity/stress distribution, strength, storativity, 
diffusivity, connectivity/ percolation probability). 

• Indications of the relationship between the physical mechanisms of rock 
fracturing and fractal dimension 

• Indications of the relationship between fracture connectivity and fractal 
dimension, 

• Relationships between fractional dimensional flow and fractal dimension of 
fracture patterns. 
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2.1 General 

Modeling of geologic geometries has been historically approached from a stochastic or 

random field modeling perspective. Complementing, but not replacing random field 

approaches, fractal sets have offered the potential for a more succinct understanding and a 

different perspective of fracture geometries and mechanics. 

A fundamental assumption of stochastic field theory is that the random process is ergodic 

and stationary implying that the pattern of heterogeneity is spatially periodic. If a rock 

mass is described by a conventional stochastic field, parametric evaluations of the stochastic 

and statistical properties of permeability, fracture structure, boundary conditions (including 

heterogeneity, anisotropy, and spatial variability) may be performed. Such evaluations are 

constrained by each measurement scale of interest, from the scale of an individual canister 

to the scale of kilometers. Although powerful from an estimation and inference 

perspective, no single statistical measure is available. Succinct and detailed random field 

discussions for transport and flow phenomena in fracture structures are well documented 

in Dershowitz et al. (1991a, 1991b}, Geier and Axelsson (1991), Ababou et al. (1988, 1990), 

Gelhar and Axness (1983), Dagan (1982, 1990). 

Employing fractal geometry to describe fracture heterogeneity offers an approach that is 

independent of the scale of observation. The fractal description combines heterogeneity 

and connectivity at all scales, such that an observation at one scale can be interpreted at a 

different scale of interest. As a seminal work on fractals, Mandelbrot (1983) remains a first 

source. Covering a broad range of physical phenomena, Mandelbrot intimates that fractals 

are reasonable models for discrete fracture features to include fractures, faults, lineaments, 

and karsts. 

More recently, Dershowitz (1991) calculated the fractal dimension for a variety of fracture 

pavements at the Yucca mountain nuclear waste repository study site in the U.S. Ericsson 

(1991) carried out a study of the fractal dimension of fractures at Aspo, Sweden. Geier et 

al. (1987) carried out a similar study for fractures at the Stripa site. These studies indicate 

that fractal dimensions can be calculated for fracture patterns, faults, and lineaments. 

What remains to be demonstrated, however, is the extent to which the single measure of 

fractal dimension provides a unique index for site hydrogeology. Having established that 

fractal dimension can be calculated from lineaments, does the existence of a fractal 

dimension necessarily imply a self- similar geometry at different scales? Does fractal 

dimension relate directly to geologic properties important to site suitability such as fracture 

network connectivity and rock block size ? 
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2.2 Fractal Scaling in Geometry and Heterogeneity of Discrete Features and 
Physical Properties 

A primary research direction in the use of fractal dimension has been in the area of scaling 
in the geometry and heterogeneity of discrete features. Most efforts have been directed 
toward the estimation of the fractal dimension, fractal dimension as an input for fracture 
network simulations, and the incorporation of fractal dimension in simulation and 
geostatistical characterizations of hydrogeological environments. 

Geier and Axelsson (1991) performed discrete fracture modeling using FracMan to analyze 
discrete fracture geometrical and hydrological data. Constant-pressure packer tests were 
analyzed using fractional dimensional methods to estimate effective transmissivities and 
flow dimensions for the packer test intervals. Fractal dimension values ranged from 1.13 to 
2.75. Discrete fracture data on orientation, size, shape, and location were combined with 

hydrologic data to develop a preliminary conceptual model for the conductive fractures at 
the site. This model was used to simulate three-dimensional populations of conductive 
fractures in 25 m and 50 m cubes of rock. After calibrating the model, components of 
effective conductivity tensors were estimated. The results provided preliminary estimates 
of the effective conductive heterogeneity and isotropy on the scale of the cubes and 
provided a demonstration of how the discrete fracture network concept can be applied, in 
conjunction with fractal dimension as an input, to derive data necessary for stochastic 
continuum and channel network modeling. 

Lee (1988) developed a number of methods for simulating two and three dimensional 
fractal fracture patterns. The Levy-Lee model is based upon the use of Levy flight (a 
fractal process of Brownian motion) to describe the locations of fracture centers (Figure 9). 
In this method, only the centers of fractures are fractal - the networks themselves may not 
be fractal Levy-Lee networks using power-law fracture size distributions may be more 
likely to be fractal than networks using other length distributions. Lee (1988) also 
developed algorithms for the generation of fractal fracture networks (Figure 10), although 
these algorithms were too computationally intensive for application in three dimensions. 

Acuna and Yortsos (1992) developed a method for generating two dimensional, self-similar 

fracture patterns, and used those models for flow simulation. Analysis of these networks 

indicated that different dimensions might be obtained by box counting, fracture length, and 
fragmentation approaches (Figure 11). 

In an extremely comprehensive paper, Sahimi and Yortsos (1991) present a review of the 
application of fractal geometry to porous media. They address four general classes of 
application of fractal geometry. These applications include: (i) characterization and 
properties of porous fractal surfaces, (ii) miscible and immiscible displacement processes 
leading to fracture structures, (iii) gradient transport over fractal objects, and (iv) the 
representation of property heterogeneity by fractal statistics. An extensive bibliography is 

contained to include implications in future research addressing a better understanding of 
fractal surfaces and pore space, the origin of fractal statistics in property distributions, and 
quantifying fractal behavior in unstable processes. 
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Miller et al. (1990) examined divider, modified divider, box, and spectral method methods 
for the calculation of the fractal dimension of fracture surfaces. Roughness profiles from 
basalt, gneiss, and quartzite were used to evaluate both fractal dimension as a roughness 
measure and the effect of the estimation method for fractal dimension. Analytical results 
indicated that calculated fractal dimension values were negatively correlated with 
nonfractal roughness measures and matched poorly with subjective, visual rankings of 
profile roughness. The four estimation methods were inconsistent in the computed 
dimension values, and the sensitivity to input parameters (e.g., box size, divider spans, and 
spectral density parameter estimation). Only the modified-divider method provided 
consistent agreement with visual interpretations. Scale dependent measures were also 
examined, and these correlated well with visual assessments. They conclude that the 
benefit of fractal dimension is its ability to support simulations and visualizations rather 
than as a means to uniquely describe roughness. 

Barton and Larsen (1985) analyzed the fracture traces exposed on three 214- 260 m2 

pavements in the same Miocene ash-flow tuff at Yucca Mountain in southwestern Nevada. 
Fracture trace lengths followed a log normal distribution. Although the areal fracture 
networks appeared visually different, the fractal dimension D of the networks were quite 
similar (D = 1.12, 1.14, 1.16). Furthermore, the network patterns are scale independent for 
trace lengths ranging from 0.20 to 25 meters indicating that the fracture network exhibits a 
self-similar fractal. 

A continuing analysis on six 205 - 1,726 m2 laterally separated, subhorizontal subpavements 
in the same Miocene ash-flow tuff at Yucca Mountain was performed by Barton et al. 
(1986). Computed fractal dimensions ranged from D = 1.10 to 1.18. As in earlier 
investigations, the fracture trace lengths followed a log normal distribution, the networks 
appeared visually different, and self similarity of the fracture network fractals was 
apparent. The authors did not, however, reach any conclusions about the usefulness of the 
fractal dimension calculated. 

Adler (1985) examined the problem of Taylor dispersion in capillary networks which exhibit 
fractal behavior. Two fractals are considered - an infinite tree of degree 3 and the 
Sierpinski gasket. Taylor dispersion along a tree can be solved analytically, specifically as a 
Poisson distribution. Evaluation of Taylor dispersion on a Sierpinski gasket is performed, 
and it is concluded that the larger the network, the longer the tracer particle is retained. 
This is because of the regular presence of bottlenecks that alter the large-time behavior of 
the various moments. 

Brown et al. (1986), while examining the mechanical and transport properties of rock joints, 
considered the correlation between the surfaces and the distribution of apertures in natural 
rock joints. Using empirical data, the power spectral density of two natural joints was 
examined. Estimates of correlation lengths demonstrated the differences between the 
surface topography and the composite topography of the natural joints. 

Wheatcraft and Tyler (1988) examined scale dependent dispersivity in heterogeneous 
aquifers. Analytic expressions were developed to describe transport in a single fractal 
streamtube and transport through a set of fractal streamtubes. A random walk model of 
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solute transport in a fractal porous medium is developed to verify and elaborate upon the 
analytical expressions. They conclude that it is possible to obtain the fractal dimension 
from a tracer experiment in which the breakthrough curve is obtained for at least two 
travel distances. As long as the fractal dimension remains constant, it is then possible to 
predict solute migration at scales larger than the scale of observation in which the fractal 
dimension and the dispersivity were obtained. 

La Pointe (1988) discusses the development of an index of fracture density based upon 
fractal dimension (2 < D < 3) for two dimensional visualizations of fractures. Two 
formulations are used: (i) the number of fractures per unit area and (ii) the density of 
fracture-bounded rocks. A combination of randomly generated fractures and natural (field) 
data was used in the fractal dimension computation. It is determined that fracture density, 
as defined by either formulation, is fractal and scale invariant. For formulation (i), the 
fractal dimension will be higher for a greater number of lines, bigger or longer lines, and 
the more the lines are randomly distributed in space. Under formulation (ii), a higher 
fractal dimension seems to occur as the number of blocks increase. Computer simulations 
suggest that D may be more sensitive to the number of fractures or blocks (and their 
spatial distributions) rather than size and orientation. Most importantly, La Pointe 
indicates that block size distributions may be controlled significantly by the fractal 
dimension of the geology. 

Methods of computing fractal dimension for fracture surfaces were evaluated by Carr 
(1989). The methods evaluated are the divider method, the spectral method, and a method 
for estimating joint roughness coefficient CTRC). Simple statistical correlation estimates 
between the three methods are computed. Carr has concluded that the divider method is 
preferred for the Yucca Mountain fracture surfaces when correlation with the JRC is 
desired. 

Brown (1987 and 1989) used fractal dimension as a basis for the generation of rough 
surfaces (Figure 12) to evaluate fluid flow and conduction of electricity on simulated 
fractures composed of rough surfaces, and to simulate flow between rough surfaces. A 
fractal model of surface topography was used to generate pairs of rough surfaces. He 
determined that variations on fractal dimension produce only a second order effect on the 
fluid flow. Additionally, Brown (1987) concluded from examination of surface roughness 
that the divider method and the spectral method will yield the same results if horizontal 
resolution at which the profile is measured is smaller than the crossover length. For 
resolutions greater than the crossover length, the divider method always yields fractal 
dimensions close to 1. 

Fractal processes in soil water retention were investigated by Tyler and Wheatcraft (1990). 
Although the research addresses soil pore size and distribution, their approach may have 
application to the density of fractures and the area of fractures by volume. Using the 
Sierpinski gasket model of soil pores and expanding on the previous work of Adler (1989), 
functional relationships in terms of water content and capillary pressure are developed for 
the Burdine and the Mualem models of soil conductivity. Such an effort may serve to 
integrate soil mechanics with aspects of physical fracture processes. 
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Kumar and Bodvarsson (1990) expand the use of fractal networks and dimensionality in 
terms of characterizing fracture roughness. Their work addresses both isotropic and 
weakly anisotropic surfaces. The algorithms they employ may be directly transferable to 
existing fracture network models for representation of weakly anisotropic surfaces and 
profiles exhibiting a comer frequency in their power spectrums. 

2.2.1 Summary 

Ample evidence exists that lineaments, faults, fracture traces, and fractures can be 
characterized by a fractal dimension. These features have been found in some cases to be 
self-similar at different scales, indicating that large scale surface observations of fractal 
dimension may be useful in characterizing smaller scale features at depth. Fractal 
dimension can vary spatially, and can be defined by several overlapping fractal processes 
("multifractals''). Fractal dimension can be useful as a tool for generating geologic fracture 
patterns similar to those observed in the field. 

2.3 Relationship Between Physical Mechanisms of Fracturing and Fractal 
Dimension 

The relationship between physical mechanisms of rock fracturing and fractal dimension has 
not been studied as extensively as the fractal statistics calculated from lineament and trace 
maps and fracture surfaces. For example, although the Geologic Association of Canada 
(Middleton, 1991) published a detailed guide to nonlinear dynamics, chaos, and fractures, 
only passing mention is made of the possibility that the non-linear dynamics of processes 
such as plate tectonics, earthquakes and fluid flow may cause the fractal patterns observed 
empirically. 

Several references exist describing the nature of the processes behind observed patterns. 
Reches (1986), for example, examines fault networks from a laboratory perspective. Fault 
properties considered include sets of similar orientations, fault zones, fault growth, and the 
statistical characterization of the length of fault traces. It is possible that a review of the 
literature of fracture mechanics could identify references to application of processes of non­
linear dynamics and resulting fractal geometries. 

Ongoing research on the relationships between fractal patterns and geologic/geomechanical 
processes is being carried out by Pyrak-Nolte, Nemant-Nasser, Ingraffia, and others. 

2.3.1 Summary 

Very limited references were found to mechanisms explaining observed fractal patterns in 
geology. Given the intensity of academic interest in fractals at the present time, we expect 
that literature in this area will become available over the next few years. 
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2.4 Relationship Between Fracture Connectivity and Fractal Dimension 

Research into the relationship between fracture connectivity and fractal dimension is 
limited. Emphasis in this area has concentrated on the means by which fractal dimension 
may be incorporated with geostatistical methods for fracture networks and aperture 
correlations. No citations were found comparing fracture connectivity in the field to fractal 
dimension directly. Several citations are available that describe the collection of fractal 
statistics for fractures and fracture surfaces, and evaluate their implication on the basis of 
simulations. 

Axelsson et al. (1990) presents rock block permeability analyses for both fractal and non­
fractal fracture patterns. These simulations indicate the increased connectivity and 
heterogeneity of fractal patterns. 

Unpublished sources identified through contacts in the oil industry (Dershowitz personal 
communication, 1991), state that fractal dimension is commonly used to select well 
locations, since higher fractal dimensions are known to indicate more connected sites with 
better oil production potential. These sites also have greater heterogeneity, and thus a 
greater probability of being completely dry. However, this is not as significant as the 
potential for improved production if the well is not dry. It is expected that papers on the 
fractal screening of well locations will appear in the petroleum literature within 6 to 10 
months. 

Chiles (1988) examined a fracture network containing some 6,000 fracture traces having 
extents of 0.20 to 20 meters at the Fanay-Augeres uranium mine from both a geostatistical 
and a fractal perspective. Based upon the author's analysis, the network cannot be 
considered as a fractal with constant dimension, nor can it be evaluated as a set of 
randomly located fractures. Thus, neither a fractal nor a geostatistical characterization is 
sufficient The authors conclude that the fractal model is easy to fit and simulate along a 
line, but, in two and three dimensions, simulations are considerably more difficult than a 
geostatistical model, which, although considerably more complex, can be easily simulated in 
three dimensions. Generalized algorithms for each form of simulation are presented. 

In Wang, Narasimhan and Scholz (1988), an analytic expression is derived that relates the 
variogram of the spatial correlation of the aperture of a fractal fracture to the 
dimensionality of the aperture. The aperture of a rough fracture with low fractal 
dimension is highly correlated over distances much larger than the shear displacement. 
The aperture of a rough fracture with a high fractal density becomes uncorrelated within a 
range shorter than the shear displacement. When the fractal dimension characterizes a 
Brownian fractal, an analytical measure of proportionality is developed. 

Bruno and Raspa (1989) demonstrate that fractal dimension is a reasonable method of 
describing the behavior near the origin of variograms of random surfaces. This means that 
the irregularity has often been qualitatively examined by the geostatistics community 
without a reasonable metric for describing such an irregularity. However, the utility of 
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fractal sets is considered limited in that the only information obtained is the fractal 
dimension and a scale factor. 

LaPointe (1988), Turcotte (1986), and other references identify a strong connection between 

rock block size distributions and fractal dimension (Figure 13). Increased fractal dimension 
may smooth the distribution of block sizes, increasing both the frequency of relatively small 
rock blocks and the frequency of relatively large rock blocks. This may indicate the 
suitability of high fractal dimension sites, which have large blocks of rock with few 
conductive features, as sites for waste repositories, since regions with small rock blocks 
(such as fracture zones) would be avoided in any case. 

2.4.1 Summary 

Although references directly relating empirically measured fractal dimension to empirically 
measured rock mass connectivity were not identified, information from oil industry 
contacts, and papers on rock blocks indicate that fractal dimension is directly related to 
rock block connectivity in situ. Studies of empirical measurements of fractal dimension in 
fracture patterns and fracture surfaces have indicated that fractal fracture patterns are not 
necessarily self-similar at different scales, and that fractal dimension by itself is not an 
adequate index for comparison of geologic geometries. 

2.5 Relationship Between Fractional Dimensional Flow and Fractal Dimension 

Significant work has been done relating fractional dimensional flow (Barker, 1988) to the 
connectivity of fractured rock. Although Karasaki et al. (1988) assert that fractional 
dimension flow is related to the fractal dimension measured from lineaments and fracture 
traces, no empirical evidence of this has been reported. The fractional dimension of flow is 
defined by the increase in flow area, Af, with distance from the source, r, for an equation of 
the form A£ ex r° . For linear flow, area is constant with distance r, such that the increase 
is r°. For radial and spherical flow, D is 1 and 2, respectively. Any change in flow area for 
this value of D is non-integer is term fractional dimensional flow (Doe, 1991). 

Doe and Geier (1991) and Geier and Axelsson (1991) demonstrate that flow dimensionality 

is directly related to rock connectivity. However, these studies cannot be interpreted 
directly in terms of fractal dimension. 

Emanuel et al. (1989) proposed a method for combining fractal statistics, detailed geologic 

data, finite difference solution, and streamtube models into a systematic approach for 
reservoir performance. This approach is based upon first determining the 
porosity/permeability character of the reservoir and the determination of the statistical 
structure using fractals. A random fractal interpolation scheme is then employed to project 
well data to the interwell region. Fluid flow parameters are then established, and the 
heterogeneity is modeled at a similar level of granularity as the field data. Phase fractional 

flow at the producer is then related to pressure and volume of the fluid injected. A 
streamtube model is then coupled with the characteristic solution to estimate field-wide 
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project performance, historical data is used for model validation, and planned injection 
rates are then incorporated to forecast future performance. The use of fractal interpolation 
methods and the fractal distribution of heterogeneity is considered effective to be included 
in the simulation models and for estimating vertical sweep efficiency. 

Incorporation of fractal dimension in the use of conditional simulation as a tool in 
modeling reservoir heterogeneity is presented in Hewett and Beherns (1990). The article 
concentrates on the use of field data and simulation to estimate flow properties and 
associated uncertainties. As part of the estimation procedures, it is observed that since 
geologic structures often exhibit high correlations, a power-law variogram can be 
constructed to account for the spatial structure of property variation. A specific component 
of the power-law variogram is the fractal codimension (the difference between the 
Euclidian dimension and the fractal dimension of the distribution). Kriging of the fractal 
variogram is then performed to construct realizations of random fields. Fractal 
dimensionality serves as the basis for generating an 850 ft geologic cross section which is 
then used to define the simulation domain for scale averaging of absolute permeability, 
dispersivity, and relative permeability. 

Chang and Yortsos (1990) developed a general formulation for single-phase flow in a 
system that consists of a fractal fracture network embedded in a Euclidian matrix. Two 
cases were examined: where only the fractal fracture network participates in the flow and 
where both the matrix and the fractal fracture network participate. Their results indicate 
that identification and description of reservoirs with a high spatial disorder, poor 
connectivity, and multiple property scales is possible. 

Ababou and Gelhar (1990) investigated the use of spectral conditioning as a means to 
examine the effective characteristics of flow in a medium having many scales of 
heterogeneity. Fractal dimension is discussed as one way to describe the heterogeneity of 
the medium. Closed form solutions were developed for the scale-dependent variance of 
hydraulic head and for the effective conductivity in a finite flow domain of size L. These 
statistical quantities were shown to be subject to inherent uncertainty due to unresolved 
heterogeneities at a larger scale. Their approach illustrates the distinction between spatial 
variability and uncertainty for finite scale hydrological phenomena. 

Neumann (1990) postulated that dispersivity in both fractured and porous media may be a 
fractal process, defined by log-log scale relationships (Figure 14). Based upon this theory, a 
different dispersion would be appropriate to every modeling scale, with little variation 
between media. This work illustrates the practical application of fractal concepts in 
hydrogeology. 
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2.5.1 Summary 

The relationship between fractal dimension, fractional dimensional flow, and fracture 
connectivity is a three sided equation. The relationship between fractal dimension and 
fracture connectivity, and the relationship between fractional dimensional flow and fracture 

connectivity are both well established. The relationship between fractal dimension and 

fractional dimensional flow is intuitively reasonable, but can not be established on the basis 

of documents reviewed here. 
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3. TASK 2: SIMULATION OF ROCK WITH VARYING FRACTAL DIMENSION 

Based upon the literature survey carried out to date, no field study has been carried out 
comparing the hydrogeology of sites with varying fractal dimension. Therefore, in order to 
evaluate the potential usefulness of fractal dimension as a metric and an index, geologic 
environments with a range of fractal dimensions were compared based upon simulations. 

Simulations were carried out using the FracMan package (Dershowitz et al., 1991c). 

Table 2 provides the parameters used in simulations. Figure 15 illustrates the discrete 
fracture conceptual model used in simulations. 

Table 2. Parameters used in FracMan Simulations 

Parameter Value 

Geologic Conceptual Levy-Lee Fractal Model 
Model 1000 m x 1000 m x 1000 m domain 

Intensity• Varying P 32 (m2/m3) from 0.0015 m·1 to 0.0075 m·1 

Fractal Dimension Varying D from 0.5 to 3.5 

Orientation Mean Pole Trend 450 

Mean Pole Plunge 45° 

Dispersion Fisher 1e=l (uniform 
dispersion on the 
sphere) 

Size Mean 25m 

Standard Deviation 25m 

Distribution LogNormal 

Transmissivity Mean 2.3 10-8 

Standard Deviation 4.18 10·7 

Distribution LogNormal 

Scoping simulations were carried out using the fractal Levy-Lee discrete fracture model 
(Geier et al., 1987) with levels of fractal dimension between 0.5 and 3.5, for a range of 
fracture intensities. Note that the Levy-Lee model is based upon a three dimensional 
process of fractal fracture centers, and does not ensure that the fractures themselves are 
self-similar, although trace planes through Levy-Lee clusters do appear fractal (Figure 10). 

•intensity P 32 is defined as fracture area per unit volume using the notation of 
Dershowitz and Herda (1992). P32 is a robust, scale invariant intensity measure. 
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Figures 17 through 29 show the relationships found between fractal dimension and other 

measures of rock mass hydrogeology. Fracture connectivity measures are explained in 

Figure 16. Throughout this section, "Fractal Dimension" refers to the mass density measure 

of dimension used in the Levy-Lee model. 

• Figure 17: Connectivity measure C1 (fracture intersections/m3) increases 

dramatically with fractal dimension for the fracture geometry and range of 

fracture intensities simulated. Surprisingly, the importance of fractal dimension 

in determining connectivity measure C1 is at least as great as intensity. This 

indicates that, as an index of connectivity, fractal dimension may be quite useful. 

Figure 18 presents the same information shown in Figure 17, with bounds 

indicating the range of results obtained in simulations for each level of fracture 

intensity. 

• Figure 19: Connectivity measure C2 (fracture intersection length/m3) follows 

approximately the same relationship with fractal dimension as C1 . Figure 20 

presents the same information shown in Figure 19, with bounds indicating the 

range of results obtained in simulations for each level of fracture intensity. 

• Figures 21 to 23: Percolation probability is the probability of conductive pathway 

between locations in rock mass as a function of the distance between the 

locations. Figures 21 to 23 show the decrease in connection between boreholes as 

a function of the distance between the boreholes for fractal fracture systems at 5 

levels of fracture intensity. Percolation probability is one of the best measures for 

the transport behavior of fractured rock, since percolation probability can be 

related directly to the probability that a pathway for solute transport will exist at 

a given scale. Comparison of figures 21, 22, and 23 indicates that fractal 

dimension is a good index for percolation probability, but must be considered 

within the context of the fracture length and intensity, which determine the scale 

of flow and transport. 

• Figure 24: Percolation length is the distance between points in the network for a 

given probability of connection. For the range of fracture intensities studied, it 

was not possible to clearly define the length for a 95% percolation probability. 

Figure 24 plots percolation length for a 50% percolation probability. For the 

Levy-Lee fractal geologic conceptual model, there appears to be a near-linear 

relationship between fractal dimension and the 50% percolation length. 

• Figure 25: The conductance of fracture pathways (when pathways exist) 

generally increases more rapidly with fractal dimension than with fracture 

intensity in the range studied. This again indicates that fractal dimension may be 

a good indicator of site suitability. 

• Figures 26 to 29: The equivalent block size measures calculated by FracMan are 

defined in Figure 26. These block size measures are defined as 1-D (width), 2-D 

(surface area), and 3-D (volume) measures. All of these measures are 

approximate, since stochastic discrete fractures do not define completely distinct 
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FIGURE 26 
BLOCK SIZE MEASURES 
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rock blocks, except for cases with high fracture density or fracture size. Block 

measures are defined based upon analysis of lengths from randomly oriented 

rays between randomly located points within a rock mass and the first fracture 

intersected. These measures are relatively efficient computationally, and are well 

correlated to block surface area and dimension measured in regular fracture 

patterns. 

Figures 27 and 28 show the mean and standard deviation of rock block volume 

measure Bv for the range of intensities and Levy-Lee fractal dimensions 

simulated. As with connectivity measures, rock block size measures are strongly 

influenced by fractal dimension. Figure 29 shows example block surface area and 

block volume measure results from a FracMan simulation. 

Analysis of variance under a random effects model of the data contained in Figures 17 and 

18 indicates that connectivity measure C1 (fracture intersections/m3) is significantly (P < 

0.01) affected by both fractal dimension for the fracture geometry and the range of fracture 

intensities (0.0015 - 0.0075). The same conclusion was found for rock block volume 

measures shown in Figures 27 and 28. However, the connectivity and rock block size 

measures may provide a more directly useful measure of fracture heterogeneity and 

pattern than fractal dimension, for evaluation of potential repository sites. 
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4. CONCLUSIONS AND RECOMMENDATIONS 

4.1 General 

An extensive literature survey was carried out on the application of fractals for comparison 
of hydrogeologic environments. Although no applications were identified that directly 
applied fractals as a hydrogeologic index, personal contacts in the oil industry indicated 
that fractal dimension is used to select locations for production and exploration wells. 
Extensive references were found to empirical studies of the fractal nature of fracture 
geometry and fractured rock hydrogeology. These papers demonstrated that consistent 
and meaningful fractal dimensions can be derived from lineaments, fracture maps, and 
fracture surfaces, and that the fractal dimension can be used to compare different geologic 
geometries. A further significant indication of the potential usefulness of fractal indices is 
the relationship found between rock block size distributions and the fractal dimension for a 
wide variety of fracture patterns cited in the literature. 

Numerical simulations carried out with the FracMan model indicate that fractal dimension 
appears to be a useful index for fracture connectivity and block formation. Since fracture 
connectivity is strongly related to both large scale and small scale radionuclide transport, 
this indicates potential usefulness of the fractal dimension as an index for site comparison. 
Surprisingly, fractal dimension seems to have as strong an effect on connectivity and block 
formation as fracture intensity, at least within the range simulated. 

Based upon both the literature survey, and numerical simulations, it appears that fractal 
dimension can be used to distinguish geologic environments. However, further study will 
be required to determine which values of fractal dimension are preferable for repository 
location in particular geological environments. 

4.2 Limitations 

This study has identified the following constraints on the practical application of fractal 
methods for comparison of hydrogeologic environments: 

• Fractal dimension must be defined in the context of the method used to calculate 
dimension. 

• Fractal dimension calculation approaches are limited to the analysis of self-similar 
or self-affine patterns. While most methods are applicable to self-similar patterns, 
most geologic processes can be expected to be self-affine. Further, most methods 
for defining heterogeneity are limited to analysis of rough surfaces or point 
processes, rather than processes of lines in a plane (e.g., lineaments and traces) or 
planes in three dimensional space. 
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• Lineament or trace density should be defined in terms of lineament length per 

unit area (P21), rather than conventional concept of "spacing", which is limited to 
specific directions. P21 can be readily converted to three dimensional intensity P32 

(area per unit volume). These transformities are described in Dershowitz and 

Herda (1992). 

• Features formed by different geologic/tectonic processes may have different fractal 

dimension. This may result in superposed dimensions (multifractals), which 

make it difficult to extrapolate between scales, since different effective fractal 

dimensions may apply at different scales. 

• A wide variety of index measures are available to describe the pattern of geologic 

features, including geostatistical variograms, spatial process statistics, and 
percolation measures. In this study, connectivity measures C1, and Ci, block size 

measures, and percolation probabilities were evaluated. These measures may be 

more directly correlated to hydrologic behavior, and may be preferable to fractals 

as index measures for site comparisons. 

4.3 Recommendations 

Recommendations to 5KB for the application of fractals in evaluation and comparison of 

potential repository sites are summarized as follows: 

• Calculation of fractal dimensions for lineament patterns is an easy and 
inexpensive method to obtain useful, quantitative information about the 

heterogeneity of discrete features. Fractal dimensions should therefore be 
calculated as a standard procedure as part of the analysis of fracture and fault 

patterns. 

• Multiple methods should be used for calculating fractal dimensions, including 

methods designed for both self-affine and self-similar fractures. The Box, Density, 

Spectral Density, and Variogram methods are recommended. 

• In addition to fractal dimensions, intensity, connectivity, and block size measures 

should be calculated from discrete feature patterns. Connectivity measures may 

be particularly valuable for comparing sites in terms of the probability of 

significant pathways for radionuclide migration, and block size measures may be 

valuable for analysis of the potential for significant "rock cans" suitable for 
canister placement. 
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